## Structural Change with Endogenous Input-Output Linkages

#### Hang Hu

University of Melbourne

December, 2018

#### Structural Change: Recent US Evidence



Figure: Value added share

#### From Herrendorf, Rogerson, and Valentinyi (13)

## Leading Interpretations

Leading theories focus on consumer preference and income

- Price effects: sector-biased technological change and complementary preferences
- Income effects: sector-biased income elasticity
- Recent studies show importance of both effects

literature

## Leading Interpretations

Leading theories focus on consumer preference and income

- Price effects: sector-biased technological change and complementary preferences
- Income effects: sector-biased income elasticity
- Recent studies show importance of both effects

Leading theories silent on producer interactions and heterogeneity

- Producers are interconnected by input-output linkages
- Producers buy and sell intermediate-inputs (I-I)
- External outsourcing of I-I induces mobility of labor and capital and generates structural change (SC)

Suppose outsourcing cost  $\downarrow$  from sector  ${\color{black}S}$  to sector  ${\color{black}M}$ 

- Producer in M has incentive to buy more I-I
- Producer in S is profitable to supply more I-I

Suppose outsourcing cost  $\downarrow$  from sector  ${\color{black}S}$  to sector  ${\color{black}M}$ 

- Producer in M has incentive to buy more I-I
- Producer in S is profitable to supply more I-I

Sector  $M \uparrow I$ -I demand  $\Longrightarrow$  VA share  $\downarrow$ 

► Relies more on outsourcing ⇒ labor & capital move away

Suppose outsourcing cost  $\downarrow$  from sector  ${\color{black}S}$  to sector  ${\color{black}M}$ 

- Producer in M has incentive to buy more I-I
- Producer in S is profitable to supply more I-I

Sector  $M \uparrow I$ -I demand  $\Longrightarrow$  VA share  $\downarrow$ 

▶ Relies more on outsourcing ⇒ labor & capital move away

Sector  $S \uparrow I$ -I supply  $\Longrightarrow$  VA share  $\uparrow$ 

▶ Produces more outsourced tasks ⇒ labor & capital move in

Recent US evidence

Suppose outsourcing cost  $\downarrow$  from sector  ${\color{black}S}$  to sector  ${\color{black}M}$ 

- Producer in M has incentive to buy more I-I
- Producer in S is profitable to supply more I-I

Sector  $M \uparrow I$ -I demand  $\Longrightarrow$  VA share  $\downarrow$ 

▶ Relies more on outsourcing ⇒ labor & capital move away

Sector  $S \uparrow I$ -I supply  $\Longrightarrow$  VA share  $\uparrow$ 

▶ Produces more outsourced tasks ⇒ labor & capital move in

Recent US evidence

#### SC from M to S



### **Beyond Leading Theories**

This paper proposes a new theory for structural change

- endogenizes input-output linkages: Ricardian trade
- complements the literature on structural change

### **Beyond Leading Theories**

This paper proposes a new theory for structural change

- endogenizes input-output linkages: Ricardian trade
- complements the literature on structural change

This paper does not consider

- organizational factors or management strategies
- international trade and offshoring

#### **Result Preview**

- Quantifying the four effects
  - ► I-I supply effects (SE) are essential, comparable to price effect (PE)
  - ► I-I demand effect (DE) and Income effect (IE) are less important.

#### **Result Preview**

- Quantifying the four effects
  - ► I-I supply effects (SE) are essential, comparable to price effect (PE)
  - ► I-I demand effect (DE) and Income effect (IE) are less important.

- Quantifying the I-I supply channel Relative to manufacturing,

  - ► services ↑ TFP scale; ↓ outsourcing supply cost

### **Result Preview**

- Quantifying the four effects
  - ► I-I supply effects (SE) are essential, comparable to price effect (PE)
  - ► I-I demand effect (DE) and Income effect (IE) are less important.

- Quantifying the I-I supply channel Relative to manufacturing,

  - ► services ↑ TFP scale; ↓ outsourcing supply cost

- Discussion of implication
  - producer interaction and heterogeneity are non-neutral
  - productivity slowdown may be overstated by the SC literature

### Roadmap

- 1. Introduction
- 2. Empirical Evidence
- 3. Model
- 4. Quantifying the Importance of the Four Effects
- 5. Quantifying the I-I Supply Channel
- 6. Conclusion

# **Empirical Evidence**

#### **Two Sufficient Statistics**

Network view of input-output linkages

- B: input-output matrix example
- ► *B*1: total intensity of I-I supply with 1 unit of length
- ▶  $B^2$ 1: total intensity of I-I supply with 2 unit of length
- $B^{N}$ 1: total intensity of I-I supply with N unit of length

I-I supply multiplier:  $\mu^s \equiv (I - B)^{-1} \mathbf{1} = (I + B + B^2 + ... + B^{\infty})\mathbf{1}$ 

Total direct and indirect I-I connections to downstream sectors

I-I demand multiplier:  $\mu^d \equiv 1'(I-B)^{-1} = 1'(I+B+B^2+...+B^{\infty})$ 

Total direct and indirect I-I connections to upstream sectors

#### **Empirical Evidence**

- 1. VA share  $\uparrow$  with I-I supply multiplier;  $\downarrow$  with I-I demand multiplier
  - Four Sectors: Manufacturing (Manu), market service (MS), non-market service (NMS), other good (OG)
  - 35 major economies, during 1995-2007

#### VA Share Increases with I-I Supply Multiplier



Figure: Value added share and intermediate input supply multiplier

#### VA Share Decreases with I-I Demand Multiplier



Figure: Residual VA share and intermediate input demand multiplier

#### **Empirical Evidence**

- 1. VA share  $\uparrow$  with I-I supply multiplier;  $\downarrow$  with I-I demand multiplier
  - Four Sectors: Manufacturing (Manu), market service (MS), non-market service (NMS), other good (OG)
  - 35 major economies, during 1995-2007

2. Sectoral gross output share of GDP (Domar weight) ↑ with I-I supply multiplier.

#### Domar Weight Increases with I-I Supply Multiplier



Figure: Domar weight and intermediate input supply multiplier

# Model

#### Preferences

- From Comin, Lashkari and Mestieri (18)
- ► Nonhomothetic CES in aggregate consumption:  $\sum_{i=1}^{n} \Omega_{i}^{\frac{1}{e}} C_{t}^{\frac{e_{i}-e}{e}} C_{it}^{\frac{e-1}{e}} = 1$
- $\triangleright$  *\epsilon* is elasticity of substitution between sectoral consumption.
- $\epsilon_i$  measures the income elasticity of demand.

• If 
$$\boldsymbol{\epsilon}_i = 1$$
,  $C_t = \left(\sum_{i=1}^n \Omega_i^{\frac{1}{\varepsilon}} C_{it}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$ 

Advantages

- Isolate income effects from price effects
- Stable income elasticity, consistent with data

## Technology

- Nonhomothetic CES in aggregate output:  $\sum_{i=1}^{n} \Psi_{it}^{\frac{\kappa}{\rho}} Q_{t}^{\frac{\tilde{\zeta}_{i}-\rho}{\rho}} Q_{it}^{\frac{\rho-1}{\rho}} = 1$
- Sectoral output is CES aggregate of I-I:  $Q_{it} = \left(\sum_{j=1}^{n} X_{ijt}^{\frac{\theta}{\theta}}\right)^{\frac{1+\theta}{\theta}}$
- ► I-I is CES aggregate of firm-level I-I varieties or tasks:  $X_{ijt} = \left[ \int_0^1 X_{ijt}(\omega)^{\frac{\nu-1}{\nu}} d\omega \right]^{\frac{\nu}{\nu-1}}$

Key features

- $\Psi_{it}$   $\uparrow$  with  $\mu_{it}^{s}$ , motivated by evidence 2 and mechanism
- $\Psi_{it}$  is state variable for aggregate producer
- Isolate I-I supply effect from price and income effects

#### A Binary Version of Eaton and Kortum (02)

I-I Variety is produced in-house or by outsourcing (Boehm 18):
 *P*<sup>\*</sup><sub>ijt</sub>(ω) = min(*P*<sup>H</sup><sub>ijt</sub>(ω), *P*<sup>X</sup><sub>ijt</sub>(ω))

Production in-house:  $X_{ijt}^{H}(\omega) = a_{ijt}^{H}(\omega)k_{ijt}^{\alpha}(\omega)l_{ijt}^{1-\alpha}(\omega)$ 

- ▶ ω ∈ [0, 1]
- ► Frechet distributed TFP:  $\Pr[a_{ijt}^H \le a] \equiv F_{it}(a) = e^{-T_{it}a^{-\zeta}}$

Outsourcing:  $X_{ijt}^X(\omega) = a_{ijt}^X(\omega)Q_{ijt}(\omega)$ 

- ► Frechet distributed TFP:  $\Pr[a_{ijt}^X \le a] \equiv F_{jt}(a) = e^{-T_{jt}a^{-\zeta}}$
- Iceberg outsourcing cost  $\tau_{ijt}$  applies.

#### Structural Change in Consumption

Consumption share

$$\log \frac{\lambda_{it}}{\lambda_{jt}} = \log \frac{\Omega_i}{\Omega_j} + (1 - \varepsilon) \log \frac{P_{it}}{P_{jt}} + (\varepsilon_i - \varepsilon_j) \log C_t$$

- ▶ PE ( $\varepsilon$  < 1): structural change from relatively  $\downarrow$  price to  $\uparrow$  price sector.
- **IE**: structural change from lower elastic to higher elastic sector.
- Consistent with the literature.

## Structural Change in Production

Value added share

$$\log \frac{\eta_{it}}{\eta_{jt}} = \log \frac{1 - \sigma_{it}}{1 - \sigma_{jt}} + \kappa \log \frac{\Psi_{it}}{\Psi_{jt}} + (1 - \rho) \log \frac{P_{it}}{P_{jt}} + (\xi_i - \xi_j) \log Q_t$$

- $\sigma_{it}$  is I-I demand intensity
- $\Psi_{it}$  is determined by I-I supply multiplier.
- DE: structural change to sectors with smaller growth of I-I demand multiplier
- SE: structural change to sectors with larger growth of I-I supply multiplier if κ > 0
- Income is aggregate gross output, rather than consumption.

Connection to literature

• 
$$\frac{\eta_{it}}{\eta_{jt}} = \frac{\lambda_{it}}{\lambda_{jt}}$$
 if  $B = I$ ,  $\Psi_{it} = \Psi_i$ , and same elasticities

#### Endogenous Input-Output Linkages and Prices

Intensity of input-output linkage

$$\bullet \quad B_{jit} \equiv \frac{P_{ijt}X_{ijt}}{P_{it}Q_{it}} \frac{P_{ijt}^{X}X_{ijt}^{X}}{P_{ijt}X_{ijt}} = \left(\frac{P_{ijt}}{P_{it}}\right)^{-\theta} \frac{T_{jt}(P_{jt}\tau_{ijt})^{-\zeta}}{T_{jt}(P_{jt}\tau_{ijt})^{-\zeta} + T_{it}(\tilde{w}_{it}\tau_{iit})^{-\zeta}} \quad \text{intuition}$$

Price

Sectoral price: 
$$P_{it} = \left[\sum_{j=1}^{n} (P_{ijt})^{-\theta}\right]^{-\frac{1}{\theta}}$$
 intuition
I-I price:  $P_{ijt} = \frac{\nu}{\nu-1} \left[\Gamma\left(\frac{1-\nu+\zeta}{\zeta}\right)\right]^{\frac{1}{1-\nu}} \left[T_{jt}(P_{jt}\tau_{ijt})^{-\zeta} + T_{it}(\tilde{w}_{it}\tau_{iit})^{-\zeta}\right]^{-\frac{1}{\zeta}}$ 

• Factor cost composite: 
$$\tilde{w}_{it} = \left(\frac{r_{it}}{\alpha}\right)^{\alpha} \left(\frac{w_{it}}{1-\alpha}\right)^{1-\alpha}$$

## Quantifying the Importance of the Four Effects

Data

#### Model Estimate and Calibration

Regression to estimate elasticities in production side SC

▶  $\beta = 0.887, \kappa = 0.686, 1 - \rho = 0.503, \xi_{MS} - \xi_{Manu} = -0.029$  (detail)

Regression to estimate elasticities in consumption side SC

• 
$$\varepsilon = 0.344$$
,  $\epsilon_{MS} - \epsilon_{Manu} = 0.004$ 

#### Model Estimate and Calibration

Regression to estimate elasticities in production side SC

►  $\beta = 0.887, \kappa = 0.686, 1 - \rho = 0.503, \xi_{MS} - \xi_{Manu} = -0.029$  (detail)

Regression to estimate elasticities in consumption side SC

• 
$$\varepsilon = 0.344$$
,  $\epsilon_{MS} - \epsilon_{Manu} = 0.004$ 

Trade cost, TFP scale, Trade and CES elasticities

- Suppose  $\zeta$ ,  $\theta$  and  $\nu$  are known; normalise  $\tau_{iit} = 1$
- $T_{it}$ ,  $\tau_{ijt}$  and  $\tilde{w}_{it}$  exactly calibrated to match data:  $B_{jit}$  and  $P_{it}$
- $\zeta$  and  $\theta$  calibrated to minimize moment gap of wage growth detail
- Result:  $\zeta = 2.701$ ,  $\theta = 1.646$  and  $\nu = 3.5$

#### Benchmark Decomposition of Structural Change



Figure: Relative value added share of market service to manufacturing

The four effects

► I-I supply effect: gap b/w red solid line and green solid line

#### Benchmark Decomposition of Structural Change



Figure: Relative value added share of market service to manufacturing

#### The four effects

- ► I-I supply effect: gap b/w red solid line and green solid line
- Price effect: gap b/w green solid line and black solid line

#### Benchmark Decomposition of Structural Change



Figure: Relative value added share of market service to manufacturing

#### The four effects

- ► I-I supply effect: gap b/w red solid line and green solid line
- Price effect: gap b/w green solid line and black solid line
- Income effect: gap b/w black solid line and red dash line
- ▶ I-I demand effect: gap b/w red dash line and green dash line

#### Simulation and Decomposition

- Manipulate the calibrated primitives as in the following two cases
- ► Simulates DE, SE, PE and then structural change
- Re-estimate the four effects based on simulated data
- Re-do the decomposition exercises

Holding trade costs at the initial year level: τ<sub>ijt</sub> = τ<sub>ij,1995</sub>
 β = 0.926, κ = 0.865, 1 − ρ = 0.182, ξ<sub>MS</sub> − ξ<sub>Manu</sub> = 0.031.

2. Holding TFP scales at the initial year level:  $T_{it} = T_{i,1995}$ 

•  $\beta = 1.005, \kappa = 1.151, 1 - \rho = 0.468, \xi_{MS} - \xi_{Manu} = -0.010.$ 

#### Decomposition Under the First Simulation



Figure: Relative value added share of market service to manufacturing

I-I supply effect dominates structural change mechanisms

# Decomposition Under the Second Simulation



Figure: Relative value added share of market service to manufacturing

I-I supply effect dominates structural change mechanisms

# Validation

▶ US long run data: 1947-2010. 🔳

Sub-sample of developed countries and developing countries.

• Other values of  $\zeta$  and  $\theta$ .

▶ OG to Manu; NMS to Manu. 🖪

Employment share. R5

• Impose 
$$\beta = 1$$
. R6

# Quantifying the I-I Supply Channel

# How Divergent Are Outsourcing Supply Cost?



Figure: World average outsourcing supply cost at sector-pair

S have lower growth of outsourcing supply cost, relative to M

# How Divergent Are TFP scale Growth?



Figure: Relative sectoral TFP and efficiency at world average efficiency

- S have higher growth of TFP scale, relative to M
- S have lower growth of overall efficiency, relative to M

# **Counterfactual Setup**

Counterfactual study to show importance of outsourcing supply cost

- 1. Suppose MS has same growth path of outsourcing supply cost as Manu.
- 2. Compare relative VA share and I-I supply multiplier.

Counterfactual study to show importance of TFP scale

- 1. Suppose MS has same growth path of TFP scale as Manu.
- 2. Compare relative VA share and I-I supply multiplier.

# Role of Outsourcing Supply Cost



Figure: Relative VA share and I-I supply multiplier of MS to Manu more

# Role of TFP Scale



Figure: Relative VA share and I-I supply multiplier of MS to Manu more

Without growing comparative advantage from TFP scale, relative VA share and I-I supply multiplier 
 by less proportion

# Role of $\zeta$



Figure: Relative value added share and I-I supply multiplier of MS to Manu

 Structural change positively depends on I-I supply capacity, as we move trade elasticity

# Conclusion

A new prominent mechanism to explain VA share based SC

 Heterogeneous growth path of TFP scale and trade cost motivates outsourcing

• Outsourcing generates SC through I-I supply channel

• Given SC reflects outsourcing, TFP slowdown may be overstated

Producer interaction and heterogeneity matter at least in SC study

# Thank You

# Appendix

# Structural Change: Recent US Evidence



Figure: Consumption share

From Herrendorf, Rogerson, and Valentinyi (13)

### Literature

Structural change

- PE: Ngai and Pissarides (07)
- ▶ IE: Kongsamut, Rebelo and Xie (01)
- ▶ PE + IE: Comin, Lashkari and Mestieri (18)
- outsourcing: Berlingieri (14); Sposi (18)

Ricardian trade

- International trade + multi-country + final output: Eaton and Kortum (02)
- Domestic outsourcing + multi-sector + I-I: Boehm (18)

back

# **Recent US Evidence**



Figure: Value added share and intermediate-inputs supply capacity

► Value added share ↑ with I-I supply capacity

# **Thought Experiment**

| Benchmark |       |       |   |   | SC    |       |       |   |   |
|-----------|-------|-------|---|---|-------|-------|-------|---|---|
|           | I-IS1 | I-IS2 | С | Q |       | I-IS1 | I-IS2 | С | Q |
| I-ID1     | 1     | 1     | 2 | 4 | I-ID1 | 1     | 2     | 2 | 5 |
| I-ID2     | 1     | 1     | 2 | 4 | I-ID2 | 1     | 1     | 2 | 4 |
| VA        | 2     | 2     |   |   | VA    | 3     | 1     |   |   |
| Q         | 4     | 4     |   |   | Q     | 5     | 4     |   |   |

► I-IS1+I-IS2+C=O=I-ID1+I-ID2+VA

Holding constant basic prices and income

Structural change story **back** 

- 1. Shock of outsourcing cost  $\implies$  S2 can outsource to S1 more easily
- 2. S2 relies on more I-I outsourcing, shifting out labor and capital
- 3. S1 needs to supply more I-I, hiring additional labor and capital
- 4. Structural change from S2 to S1.

Take away: SC from relatively demandable sector to suppliable sector  $_{_{28/28}}$ 

# Input-Output Table and B Matrix

| Table 1 |       |       |   |   | Table 2 |       |       |   |   |
|---------|-------|-------|---|---|---------|-------|-------|---|---|
|         | I-IS1 | I-IS2 | С | Q |         | I-IS1 | I-IS2 | С | Q |
| I-ID1   | 1     | 1     | 2 | 4 | I-ID1   | 1     | 2     | 2 | 5 |
| I-ID2   | 1     | 1     | 2 | 4 | I-ID2   | 1     | 1     | 2 | 4 |
| VA      | 2     | 2     |   |   | VA      | 3     | 1     |   |   |
| Q       | 4     | 4     |   |   | Q       | 5     | 4     |   |   |

► I-IS1+I-IS2+C=Q=I-ID1+I-ID2+VA

• In table 1, B=  $\begin{bmatrix} 0.25 & 0.25 \\ 0.25 & 0.25 \end{bmatrix}$ • In table 2, B=  $\begin{bmatrix} 0.2 & 0.5 \\ 0.2 & 0.25 \end{bmatrix}$ 



Partial Equilibrium: SC Implication of Linkage

# Multi-Sector Model with Input-Output Linkage

- Partial and competitive equilibrium model from Jones (2011).
- Inelastically supplied capital and labor
- Output and input markets clear
- Nominal accounting entities always hold at sector level

- Sectoral gross output:  $Q_i = A_i K_i^{(1-\sigma_i)\alpha_i} L_i^{(1-\sigma_i)(1-\alpha_i)} \prod_{j=1}^n (X_{ij}^X)^{\sigma_{ij}}$
- Aggregate value added:  $Y = \prod_{i=1}^{n} C_i^{\lambda_i}$
- Budget constraint:  $C_j + \sum_{i=1}^n X_{ij}^X = Q_j$

# Mechanism and Intuition

Leontief inverse

► *B* is matrix of input-output linkage.

$$\blacktriangleright L = (I - B)^{-1}$$

•  $\uparrow A_i$  by 1 percent  $\Longrightarrow \uparrow Q_j$  by  $l_{ij}$  percent

Domar weight

- $\uparrow Q_j$  by  $l_{ij}$  percent  $\Longrightarrow \uparrow Y$  by  $\gamma_i$  percent
- $\gamma_i = \sum_{j=1}^n l_{ij}\lambda_j$ ;  $\gamma_i$  is TFP elasticity ( $Q_i$  based).
- $\eta_i = (1 \sigma_i)\gamma_i$ ;  $\eta_i$  is TFP elasticity ( $Y_i$  based).

Mechanism

- Assume symmetric preference  $(\lambda_i = \lambda_j) \Rightarrow$  focus on linkage effect
- ►  $\uparrow$  I-I supply ( $\uparrow \mu_i^s$ )  $\Rightarrow$  Domar intensity  $\uparrow (\gamma_i \uparrow) \Rightarrow$  TFP elasticity  $\uparrow (\eta_i \uparrow)$
- ► ↑ I-I demand (↑  $\mu_i^d$ )  $\Rightarrow$  I-I intensity ↑ ( $\sigma_i$ ↑) $\Rightarrow$  TFP elasticity ↓ ( $\eta_i$ ↓)



#### Figure: VA share of sample developed countries



Figure: VA share of sample developing countries **back** 



#### Figure: Farms



Figure: Motor vehicles, bodies and trailers, and parts



Figure: Food and beverage and tobacco products



Figure: Administrative and support services



Figure: Miscellaneous professional, scientific, and technical services back



Figure: Sectoral supply multiplier and real value added share



Figure: Sectoral demand multiplier and real residual value added share



#### Figure: Nominal VA share of sample developed countries



#### Figure: Nominal VA share of sample developing countries



Figure: Real VA share of sample developed countries



Figure: Real VA share of sample developing countries back

### Preference

Intra-temporal sectoral consumption

$$\sum_{i=1}^{n} \Omega_{i}^{\frac{1}{\varepsilon}} C_{t}^{\frac{\epsilon_{i}-\varepsilon}{\varepsilon}} C_{it}^{\frac{\varepsilon-1}{\varepsilon}} = 1$$

$$\tag{1}$$

- Nonhomothetic CES preference
- **ε** is elasticity of substitution between sectoral consumption.
- *ε<sub>i</sub>* measures the income elasticity of demand.

• If 
$$\boldsymbol{\epsilon}_i = 1$$
,  $C_t = \left(\sum_{i=1}^n \Omega_i^{\frac{1}{\varepsilon}} C_{it}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$ .

# Sector Level Technology

Aggregate gross output

$$\sum_{i=1}^{n} \Psi_{it}^{\frac{\kappa}{\rho}} Q_{t}^{\frac{\xi_{i}-\rho}{\rho}} Q_{it}^{\frac{\rho-1}{\rho}} = 1$$
(2)

- Nonhomothetic CES
- Time-varying weight:  $\Psi_{it}$

Sectoral gross output

$$Q_{it} = \left(\sum_{j=1}^{n} X_{ijt}^{\frac{\theta}{1+\theta}}\right)^{\frac{1+\theta}{\theta}}$$
(3)

Intermediate input

$$X_{ijt} = \left[\int_0^1 X_{ijt}(\omega)^{\frac{\nu-1}{\nu}} d\omega\right]^{\frac{\nu}{\nu-1}}$$

28/28

(4)

# Firm Level Technology

Production in-house

$$X_{ijt}^{H}(\omega) = a_{ijt}^{H}(\omega)k_{ijt}^{\alpha}(\omega)l_{ijt}^{1-\alpha}(\omega)$$
(5)

Frechet distributed TFP:  $\Pr[a_{ijt}^H \le a] \equiv F_{it}(a) = e^{-T_{it}a^{-\zeta}}$ Outsourcing

$$X_{ijt}^{X}(\omega) = a_{ijt}^{X}(\omega)Q_{ijt}(\omega)$$
(6)

Frechet distributed TFP:  $\Pr[a_{ijt}^X \le a] \equiv F_{jt}(a) = e^{-T_{jt}a^{-\zeta}}$ Binary Choice

$$P_{ijt}^{*}(\omega) = \min(P_{ijt}^{H}(\omega), P_{ijt}^{X}(\omega))$$
(7)

Iceberg sourcing cost τ<sub>ijt</sub> applies. <sup>back</sup>

### Estimate of Production Side Elasticities (back)

$$\log \frac{\eta_{it}}{\eta_{jt}} = \beta \log \frac{1 - \sigma_{it}}{1 - \sigma_{jt}} + \kappa \log \frac{\mu_{it}^s}{\mu_{jt}^s} + (1 - \rho) \log \frac{P_{it}}{P_{jt}} + (\xi_i - \xi_j) \log Q_t$$

| Dependent Variable : $\log rac{\eta_{it}}{\eta_{it}}$ |           |           |           |          |          |          |          |  |  |  |
|--------------------------------------------------------|-----------|-----------|-----------|----------|----------|----------|----------|--|--|--|
| Coefficient                                            | (1)       | (2)       | (3)       | (4)      | (5)      | (6)      | (7)      |  |  |  |
| β                                                      |           | 1.486***  | 0.896***  | 0.887*** | 1.737*** | 0.970*** | 0.845*** |  |  |  |
|                                                        |           | (0.065)   | (0.045)   | (0.042)  | (0.083)  | (0.053)  | (0.056)  |  |  |  |
| κ                                                      |           | 1.406***  | 0.803***  | 0.686*** | 0.689*** | 0.646*** | 0.802*** |  |  |  |
|                                                        |           | (0.046)   | (0.037)   | (0.037)  | (0.036)  | (0.044)  | (0.055)  |  |  |  |
| 1- ho                                                  | 0.408***  | 0.272***  | 0.472***  | 0.503*** | 0.478*** | 0.547*** | 0.336*** |  |  |  |
|                                                        | (0.028)   | (0.026)   | (0.030)   | (0.029)  | (0.029)  | (0.043)  | (0.037)  |  |  |  |
| $\epsilon_{OG} - \epsilon_{Manu}$                      | -0.024**  | 0.020**   | -0.073*** | -0.059   | -0.004   | 0.682*** | 0.012    |  |  |  |
|                                                        | (0.011)   | (0.008)   | (0.028)   | (0.052)  | (0.051)  | (0.070)  | (0.068)  |  |  |  |
| $\epsilon_{MS} - \epsilon_{Manu}$                      | -0.049*** | -0.050*** | 0.190***  | -0.029   | 0.044    | 0.452*** | 0.124**  |  |  |  |
|                                                        | (0.009)   | (0.008)   | (0.022)   | (0.041)  | (0.040)  | (0.059)  | (0.054)  |  |  |  |
| $\epsilon_{NMS} - \epsilon_{Manu}$                     | -0.050*** | -0.008    | 0.073**   | -0.097*  | -0.011   | 0.022    | 0.291*** |  |  |  |
|                                                        | (0.009)   | (0.007)   | (0.030)   | (0.064)  | (0.055)  | (0.068)  | (0.086)  |  |  |  |
| Country FE                                             | NO        | NO        | YES       | YES      | YES      | YES      | YES      |  |  |  |
| Year FE                                                | NO        | NO        | NO        | YES      | YES      | YES      | YES      |  |  |  |
| DE approx.                                             | NO        | NO        | NO        | NO       | YES      | NO       | NO       |  |  |  |
| Sample                                                 | ALL       | ALL       | ALL       | ALL      | ALL      | DC       | LDC_28/2 |  |  |  |

## Estimate Strategy of $\zeta$ , $\theta$ and $\nu$

Factor cost parameter in the model is  $\tilde{w}_{it} = \left(\frac{r_{it}}{\alpha}\right)^{\alpha} \left(\frac{w_{it}}{1-\alpha}\right)^{1-\alpha}$ 

- Assume constant capital share and interest rate:  $\alpha = \frac{1}{3}$ ;  $r_{it} = r$
- Normalize  $\tilde{w}_{it} = 1$  for US manufacturing at year 2005.
- Estimate wage as  $w_{it} = \frac{w_{it}L_{it}}{L_{it}}$ .
- Let model generated average growth rate of sectoral factor cost as  $\Delta_M(\tilde{w}_i)$ ; the data estimated counterpart as  $\Delta_D(\tilde{w}_i)$
- Jointly find  $\zeta$  and  $\theta$  to minimizes the moment gap:

$$(\zeta, \theta) = \arg\min\sum_{c} \sum_{i} [\Delta_D(\tilde{w}_i) - \Delta_M(\tilde{w}_i)]^2$$

Result

- $\zeta = 2.701; \theta = 1.646$
- Calibrate  $\nu = 3.5$  to allow 40 percent mark-up (Boehm 2017).

### **Endogenous** Price

- ► *P*<sub>*ijt*</sub> consistent with final output price in Eaton and Kortum (2002).
- $P_{ijt}$  inversely depends on outsourcing efficiency  $(\Phi_{ijt} = T_{jt}(P_{jt}\tau_{ijt})^{-\zeta} + T_{it}(\tilde{w}_{it}\tau_{iit})^{-\zeta}).$
- ► Efficiency ↑ with TFP scale; ↓ with factor cost and outsourcing supply cost.
- $P_{it} \downarrow$  TFP scale;  $\uparrow$  with factor cost and outsourcing supply cost.
- ζ determines how substitutable of production technology b/w in-house and outsourcing.

back

### Endogenous Input-Output Linkage

- ► *B<sub>jit</sub>* depends on I-I share and outsourcing share.
- ► I-I share adjusts at intensive margin.
- Outsourcing share adjusts at extensive margin.
- ► Outsourcing ↑ with TFP scale (absolute advantage).
- ► Outsourcing ↓ with factor cost and outsourcing supply cost.
- *ζ* is the sensitivity of outsourcing to relative cost.
- $\downarrow \zeta \Longrightarrow$  outsourcing  $\uparrow$  (comparative advantage)

### Intuition

- Define  $\Phi_{ijt}^{\mathbf{X}} = T_{jt}(P_{jt}\tau_{ijt})^{-\zeta}; \Phi_{ijt}^{H} = T_{it}(\tilde{w}_{it}\tau_{iit})^{-\zeta}$
- $\Phi_{ijt} = \Phi^X_{ijt} + \Phi^H_{ijt}$
- Define  $\Phi_{it}^{\theta} = \sum_{j=1}^{n} \Phi_{ijt}^{\theta}$  back
- Relative price inversely depend on relative efficiency:

$$\frac{P_{it}}{P_{jt}} = \left(\frac{\Phi_{it}}{\Phi_{jt}}\right)^{-\frac{1}{\zeta}} \tag{8}$$

Relative home production share equals relatively weighted average of within sectoral home efficiency to I-I efficiency:

$$\frac{1 - \sigma_{it}}{1 - \sigma_{jt}} = \frac{\sum_{k=1}^{n} \left(\frac{\Phi_{ikt}}{\Phi_{it}}\right)^{\frac{\theta}{\zeta}} \frac{\Phi_{iit}^{H}}{\Phi_{ikt}}}{\sum_{k=1}^{n} \left(\frac{\Phi_{jkt}}{\Phi_{jt}}\right)^{\frac{\theta}{\zeta}} \frac{\Phi_{iit}^{H}}{\Phi_{jkt}}}$$

#### Data

#### World Input-Output Databse 2013 (WIOD)

- 1. World Input-Output Tables (WIOT)
  - (a) I-O Tables over 1995-2011.
  - (b) 35 sectors; 40 countries.
- 2. Socio Economic Account (SEA)
  - (a) Nominal value of gross output (GO), VA, and sectoral intermediate input (I-I).
  - (b) Price deflators of GO, VA, and I-I with base year 1995.
  - (c) Total employee working hours.
  - (d) Real fixed capital stock at year 1995 local price.
- Sector and Industry Relative Prices (Inklaar and Timmer 2014)
  - (a) Sectoral GO and VA PPP deflators at 2005 global refrence prices.
  - (b) Four sectors.
- Penn World Table (PWT) 8.1
  - (a) PPP deflator for capital stock at 2005 global reference prices.
  - (b) Annual average exchange rate.



#### Benchmark Decomposition of Structural Change



Figure: Relative VA share of service to manufacturing in US

#### Decomposition Under Counterfactual study 1



Figure: Relative VA share of service to manufacturing back

#### Counterfactual study 1 in Developed Countries



Figure: Relative VA share of MS to Manu

#### Counterfactual study 1 in Developing Countries



Figure: Relative VA share of MS to Manu (back)

CS1 in DC when  $\zeta = 4; \theta = 3$ 



Figure: Relative VA share of MS to Manu

CS1 in DC when  $\zeta = 4; \theta = 4$ 



Figure: Relative VA share of MS to Manu

CS1 in DC when  $\zeta = 1.2; \theta = 1.2$ 



Figure: Relative VA share of MS to Manu (back)

#### Decomposition Under Counterfactual study 1



Figure: Relative VA share of OG to Manu

#### Decomposition Under Counterfactual study 1



Figure: Relative VA share of NMS to Manu (back)

## Structural Change with Employment Share

$$\log \frac{l_{it}}{l_{jt}} = \beta \log \frac{1 - \sigma_{it}}{1 - \sigma_{jt}} + \kappa \log \frac{\mu_{it}^s}{\mu_{jt}^s} + (1 - \rho) \log \frac{P_{it}}{P_{jt}} + (\xi_i - \xi_j) \log Q_t$$

| Dependent Variable : $\log \frac{l_{it}}{l_{it}}$ |          |          |          |           |           |          |                      |  |  |  |
|---------------------------------------------------|----------|----------|----------|-----------|-----------|----------|----------------------|--|--|--|
| 0 Coefficient                                     | (1)      | (2)      | (3)      | (4)       | (5)       | (6)      | (7)                  |  |  |  |
| β                                                 |          | 0.568*** | 0.112**  | 0.116***  | 0.264***  | 0.234*** | 0.029                |  |  |  |
|                                                   |          | (0.079)  | (0.050)  | (0.043)   | (0.087)   | (0.050)  | (0.067)              |  |  |  |
| κ                                                 |          | 0.861*** | 0.356*** | 0.160***  | 0.165***  | 0.319*** | -0.065               |  |  |  |
|                                                   |          | (0.053)  | (0.042)  | (0.038)   | (0.037)   | (0.040)  | (0.063)              |  |  |  |
| 1- ho                                             | 0.281*** | 0.198*** | 0.031    | 0.071**   | 0.066**   | 0.245*** | 0.034                |  |  |  |
|                                                   | (0.034)  | (0.033)  | (0.033)  | (0.028)   | (0.028)   | (0.039)  | (0.040)              |  |  |  |
| $\epsilon_{OG} - \epsilon_{Manu}$                 | 0.004    | 0.049*** | -0.080** | -0.349*** | -0.341*** | 0.484*** | -0.331***            |  |  |  |
|                                                   | (0.013)  | (0.012)  | (0.033)  | (0.061)   | (0.061)   | (0.064)  | (0.083)              |  |  |  |
| $\epsilon_{MS} - \epsilon_{Manu}$                 | 0.031*** | 0.048*** | 0.417*** | -0.080**  | -0.071**  | 0.174*** | -0.129**             |  |  |  |
|                                                   | (0.009)  | (0.009)  | (0.023)  | (0.034)   | (0.034)   | (0.047)  | (0.061)              |  |  |  |
| $\epsilon_{NMS} - \epsilon_{Manu}$                | -0.023** | 0.017*   | 0.340*** | -0.274*** | -0.263*** | 0.083    | -0.320***            |  |  |  |
|                                                   | (0.010)  | (0.009)  | (0.032)  | (0.048)   | (0.047)   | (0.061)  | (0.079)              |  |  |  |
| Country FE                                        | NO       | NO       | YES      | YES       | YES       | YES      | YES                  |  |  |  |
| Year FE                                           | NO       | NO       | NO       | YES       | YES       | YES      | YES                  |  |  |  |
| IS approx.                                        | NO       | NO       | NO       | NO        | YES       | NO       | NO                   |  |  |  |
| Sample                                            | ALL      | ALL      | ALL      | ALL       | ALL       | DC       | LDC <sub>28/28</sub> |  |  |  |

### Decomposition of Employment Share



Figure: Relative Employment share of MS to Manu back

#### Benchmark Decomposition with $\beta = 1$



Figure: Relative VA share of MS to Manu (back)

# Role of Outsourcing Cost



Figure: NMS to Manufacturing

# Role of Outsourcing Cost



Figure: OG to Manufacturing back

## Role of TFP



Figure: NMS to Manufacturing

## Role of TFP



Figure: OG to Manufacturing back