Structural Change in Global Value Chains

Hang Hu

University of Melbourne

Preliminary
October 8, 2018

World Input-Output Table

- S sectors in J countries
- Row: sell intermediate input (I.I) to country-sector; sell final good to countries.
- Column: buy I.I from country-sector; make value added (VA) from primary factor
- Global Value Chains (GVC): the value of all activities such as sourcing of I.I and primary factor, that are directly and indirectly needed to produce final goods.

			Input use \& value added							Final use			Total use
			Country 1			...	Country J			Country 1	...	Country J	
			Sector 1	...	Sector S	...	Sector 1	...	Sector S				
Inputs Supplied	Country 1	Sector 1	X_{11}^{11}	...	X_{11}^{15}	\ldots	$X_{1 j}^{11}$...	$X_{1]}^{15}$	F_{11}^{1}	...	$F_{1]}^{1}$	$G O_{1}^{1}$
		\cdots	\cdots	$X_{11}^{\text {rs }}$	\ldots	$X_{1 /}^{r s}$	\ldots	\ldots	...	\ldots	\ldots
		Sector S	$X_{11}^{\text {S1 }}$...	$X_{11}^{\text {SS }}$...	$X_{1 /}^{\text {SI }}$...	$X_{1 j}^{\text {SS }}$	F_{11}^{S}	\cdots	$F_{1 J}^{S}$	GO_{1}^{5}
	\cdots	\ldots	...	$X_{i j}^{\text {rs }}$	\cdots	\ldots	$F_{i j}^{r}$	\ldots	$G O_{i}^{r}$
	Country J	Sector 1	$X_{I 1}^{11}$...	$X_{l 1}^{15}$...	$X_{I I}^{11}$...	$X_{I I}^{15}$	$F_{j 1}^{1}$...	$F_{I I}^{1}$	GO_{1}^{1}
		...	\cdots	$X_{I 1}^{\text {rs }}$	\ldots	$X_{I I}^{T s}$...	\ldots	\cdots	\ldots	\ldots
		Sector S	$X_{l 1}^{\text {S1 }}$...	$\mathrm{X}_{11}^{\text {SS }}$...	$X_{I I}^{\text {S1 }}$...	$X_{\text {II }}^{\text {SS }}$	$F_{j 1}^{S}$...	$F_{I I}^{S}$	$\mathrm{GO}_{I}^{\text {S }}$
Value added			$V A_{1}^{1}$...	$V A_{1}^{5}$	$V A_{j}^{s}$	$V A_{T}^{1}$...	$V A_{J}^{S}$				
Gross output			GO_{1}^{1}	...	GO_{1}^{5}	$\mathrm{GO}_{j}^{\text {s }}$	GO_{J}^{1}	...	$\mathrm{GO}_{J}^{\text {S }}$				

Motivation

Definition

Let B denotes the global input-output matrix: $b_{i j}^{r_{j}}=\frac{X_{i}^{I s}}{\mathrm{GO}_{j}^{\circ}}$, the vector of sectoral centrality E is defined as

$$
E=(I-B)^{-1} \mathbb{1}
$$

- In chapter 2, this centrality is called supply multiplier.
- In network, this is Bonacich centrality. Here it is a measure of direct and indirect supply connection from this sector to all other sectors.

Motivated Question

Chapter 2 suggests an important role of domestic centrality in structural change. Does this global centrality matters for structural change?

Fact

Figure: Crop and animal production, hunting and related service activities

Fact

Figure: Manufacture of computer, electronic and optical products

Fact

Figure: Telecommunications

Question

Question 1
How does trade of I.I and final output affect structural change?

- Domestic VA share based structural change
- Accounting mechanism
- Multi-country, multi-sector and multi-stage trade model

Question 2
If trade matters, which type of trade?

- International I.I trade vs. international final output trade
- International I.I trade vs. domestic I.I trade

Mechanism

Accounting Entity in GVC

In the supply side, trade flow is

$$
\begin{array}{r}
P_{i}^{r} Q_{i}^{r}=\sum_{s=1}^{S} \sum_{j=1}^{J} b_{i j}^{r s} P_{j}^{s} Q_{j}^{s}+P_{i}^{r C} C_{i}^{r} \\
\gamma_{i}^{r} \equiv \frac{P_{i}^{r} Q_{i}^{r}}{G D P}=\sum_{s=1}^{S} \sum_{j=1}^{J} b_{i j}^{r s} P_{j}^{s} Q_{j}^{s} \\
G D P
\end{array} \frac{P_{i}^{r C} C_{i}^{r}}{G D P} .
$$

- GDP is world GDP
- γ_{i}^{r} is Domar weight in terms of world GDP

Domar weight vector is solved as following:

$$
\begin{equation*}
\gamma=(I-B)^{-1} \lambda \tag{1}
\end{equation*}
$$

- λ is vector of consumption share in terms of world GDP

Structural Term

VA share is constructed by

$$
\begin{aligned}
\eta_{i}^{r} & =\frac{V A_{i}^{r}}{V A_{i}} \\
& =\frac{V A_{i}^{r}}{G O_{i}^{r}} \frac{G O_{i}^{r}}{G D P} \frac{G D P}{V A_{i}} \\
& =\left(1-\sigma_{i}^{r}\right) \gamma_{i}^{r} \frac{G D P}{V A_{i}}
\end{aligned}
$$

- $\sigma_{i}^{r}=\sum_{t=1}^{S} \sum_{k=1}^{J} b_{k i}^{t r}$

Relative VA share is given by

$$
\begin{equation*}
\frac{\eta_{i}^{r}}{\eta_{i}^{s}}=\frac{1-\sigma_{i}^{r}}{1-\sigma_{i}^{s}} \frac{\gamma_{i}^{r}}{\gamma_{i}^{s}} \tag{2}
\end{equation*}
$$

Empirical Evidence

Data

The latest World Input-Output Database contains

- $J=44$ countries (43 major economies + rest of world)
- $S=56$ sectors: 2-digit ISIC revision 4 level
- $T=15$ years: 2000-2014

Perfect database to study effect of trade on structural change

- At any year, we have $44 \times 56=2464$ nodes, a big trade network.
- At any sector, we have country year panel $J \times T$.
- At any country, we have sector year panel $S \times T$.

Balanced dataset contains 30 sectors.

Country Year Panel

At every sector, we run the following regression

$$
\hat{\eta}_{i t}=\alpha+\beta \hat{e}_{i t}+\hat{x}^{\prime} \tau+f_{i}+f_{t}+u_{i t}
$$

- $\hat{\eta}_{i t}$ is VA share relative to the benchmark sector.
- $\hat{e}_{i t}$ is centrality relative to the benchmark sector.
- Benchmark sector: manufacture of chemicals and chemical products.
- \hat{x} are control variables: Upstreamness and downstreamness (Antras and Chor 2018).

Result

- Centrality: Positive and significant at 1 percent for all 29 sectors.
- Upstream and downstream sectors tend to lose VA share, but the relationships are not as robust as in centrality.

Sector Year Panel

At every country, we run the following regression

$$
\hat{\eta}_{t}^{r}=\alpha+\beta \hat{e}_{t}^{r}+\hat{x}^{\prime} \tau+f_{r}+f_{t}+u_{r t}
$$

- The panel here is sector, otherwise same as the last slide.

Result

- Centrality: Positive and significant at 1 percent for 40 out of 44 countries.
- Upstream and downstream sectors tend to lose VA share, but the relationships are not as robust as in centrality.

One Stage Model

Model Setup

- This model follows Lorenzo and Parro (2015); and Antras and Chor (2018).
- J countries: i and j denote country
- $i j$ in subscript: international trade from i to j
- S sectors: r and s denote sector
- rs in superscript: inter-sectoral trade from r to s
- Continuum of firms: $\omega^{r} \in[0,1]$; for every $\mathrm{r}=1, \ldots, \mathrm{~S}$.
- For intermediate good, trade costs are sector pair specific.
- For final good, trade costs are sector specific.
- All markets are competitive.

Preference

Utility of representative consumer is Cobb-Douglas sum of sectoral consumption

$$
\begin{equation*}
u\left(C_{j}\right)=\prod_{s=1}^{S}\left(C_{j}^{S}\right)^{\varepsilon_{j}^{s}} \tag{3}
\end{equation*}
$$

- For any country j: $\sum_{s=1}^{S} \varepsilon_{j}^{s}=1$

Firm Level Production

Constant return to scale Cobb-Douglas function

$$
\begin{equation*}
y_{j}^{s}\left(\omega^{s}\right)=z_{j}^{s}\left(\omega^{s}\right)\left(l_{j}^{s}\left(\omega^{s}\right)\right)^{1-\sum_{r=1}^{S} \beta_{j}^{r s}} \prod_{r=1}^{S}\left(M_{j}^{r s}\left(\omega^{s}\right)\right)^{\beta_{j}^{r s}} \tag{4}
\end{equation*}
$$

- Sector pair specific intermediate input
- Assume $z_{j}^{s}\left(\omega^{s}\right)$ is an i.i.d draw from Fréchet distribution: $\exp \left\{-T_{j}^{s} z^{-\theta^{s}}\right\}$
- Marginal cost: $c_{j}^{S}=\mathrm{Y}_{j}^{s} w_{j}^{1-\sum_{r=1}^{S}} \prod_{r=1}^{S}\left(P_{j}^{r s}\right)^{r_{j}^{r s}}$
- Price: $P_{j}^{s}\left(\omega^{s}\right)=\frac{c_{j}^{s}}{z_{j}^{s}\left(\omega^{s}\right)}$

Intermediate Input Demand

Buy sector pair specific intermediate input from the lowest price producer

$$
P_{j}^{r s}\left(\omega^{r}\right)=\min _{i}\left\{\frac{c_{i}^{r} \tau_{i j}^{r s}}{z_{i}^{r}\left(\omega^{r}\right)}\right\}
$$

Sector pair intermediate input

$$
M_{j}^{r s}=\left(\int_{0}^{1} q_{j}^{r s}\left(\omega^{r}\right)^{\frac{\sigma^{r}-1}{\sigma^{r}}} d \omega^{r}\right)^{\frac{\sigma^{r}}{\sigma^{r}-1}}
$$

Final Good Demand

Buy sector specific final good from the lowest price producer

$$
P_{j}^{r F}\left(\omega^{r}\right)=\min _{i}\left\{\frac{c_{i}^{r} \tau_{i j}^{r F}}{z_{i}^{r}\left(\omega^{r}\right)}\right\}
$$

Sector final good

$$
C_{j}^{r}=\left(\int_{0}^{1} q_{j}^{r F}\left(\omega^{r}\right)^{\frac{\sigma^{r}-1}{\sigma^{r}}} d \omega^{r}\right)^{\frac{\sigma^{r}}{\sigma^{r}-1}}
$$

Key Equations Following Eaton and Kortum (2002)

Expenditure Share

$$
\begin{align*}
\pi_{i j}^{r s} & =\frac{T_{i}^{r}\left(c_{i}^{r} \tau_{i j}^{r s}\right)^{-\theta^{r}}}{\sum_{k=1}^{J} T_{k}^{r}\left(c_{k}^{r} \tau_{k j}^{r s}\right)^{-\theta^{r}}} \tag{5}\\
\pi_{i j}^{r F} & =\frac{T_{i}^{r}\left(c_{i}^{r} \tau_{i j}^{r F}\right)^{-\theta^{r}}}{\sum_{k=1}^{J} T_{k}^{r}\left(c_{k}^{r} \tau_{k j}^{r F}\right)^{-\theta^{r}}} \tag{6}
\end{align*}
$$

Price

$$
\begin{align*}
& P_{j}^{r s}=A^{r}\left(\sum_{k=1}^{J} T_{k}^{r}\left(c_{k}^{r} \tau_{k j}^{r s}\right)^{-\theta^{r}}\right)^{-\frac{1}{\theta^{r}}} \tag{7}\\
& P_{j}^{r F}=A^{r}\left(\sum_{k=1}^{J} T_{k}^{r}\left(c_{k}^{r} \tau_{k j}^{r F}\right)^{-\theta^{r}}\right)^{-\frac{1}{\theta^{r}}} \tag{8}
\end{align*}
$$

Multiple Stage Model

Why Multiple Stage Matters?

1. Multiple stage emphasize the fact of vertical specialized production.

- iphone: design \& processor in Apple \Longrightarrow display \& memory in Toshiba and Samsung \Longrightarrow assembling \& test in Foxconn

2. This vertical fragmentation deepens over time (Hummels et al. 2001).
3. Global vertical fragmentation heterogeneously distribute VA across countries and across sectors (Timmer et al. 2014).

- Countries and sectors are in different position of GVC.
- iphone: US (50\%); Japan and Korea (20\%); China (2\%) approx.
- Their position change over time.

4. Multiple stage has different implication on trade elasticity.

- Multiple stage production implies I.I pass multiple borders.
- Small reduction in tariff can generate large trade rise (Yi 2003).
- In one stage model we need large tariff reduction or large elasticity.

Model Setup

- This model extends the one sector multiple stage model (Antras and de Gortari 2017) to multiple sector multiple stage model.
- J countries: i and j denote country; $\mathcal{J}=\{1, \ldots, J\}$
- S sectors: r and s denote sector
- Continuum of firms: $\omega^{r} \in[0,1]$; for every $\mathrm{r}=1, \ldots, \mathrm{~S}$.
- N production stages: n denotes stage; $l(n)$ denotes location at stage $\mathrm{n} ; N+1$ denotes final consumption
- rs in superscript: inter-sectoral trade from r to s
- $l(n-1) l(n)$ in subscript: trade flow from $l(n-1)$ to $l(n)$

Model Setup

- Every good takes N stages to produce.
- At stage 1, production uses labour and finished input from other sectors at the same country (horizontal integration).
- At stage $n>1$, production combines labour, finished input, with unfinished good from stage $\mathrm{n}-1$ (horizontal integration + vertical integration).
- At every stage, location choice is endogenous.
- When a good (finished or unfinished) crosses border, the sector and country pair specific trade cost $\left(\tau_{i j}^{S}\right)$ is incurred.
- All markets are competitive.

Technology

Firm level price relation

$$
\begin{equation*}
P_{l(n)}^{s}\left(\omega^{s}\right)=\left(\frac{c_{l(n)}^{s}}{z_{l(n)}^{s}\left(\omega^{s}\right)}\right)^{\alpha_{n}}\left(P_{l(n-1)}^{s}\left(\omega^{s}\right) \tau_{l(n-1) l(n)}^{s}\right)^{1-\alpha_{n}} \tag{9}
\end{equation*}
$$

- Horizontal marginal cost: $c_{l(n)}^{s}=\mathrm{Y}_{l(n)}^{s} w_{l(n)}^{1-\sum_{r=1}^{S}} \prod_{r=1}^{S}\left(P_{l(n)}^{r}\right)^{\beta_{l(n)}^{r s}}$
- Vertical marginal cost conditional on endogenous location
- When $n=1, P_{l(1)}^{s}\left(\omega^{s}\right)=\frac{c_{l(1)}^{s}}{z_{l(1)}^{s}\left(\omega^{s}\right)}$
- Final good price at $\mathrm{j}: P_{j}^{s}\left(\omega^{s}\right)=P_{l(N)}^{s}\left(\omega^{s}\right) \tau_{l(N) j}^{s}$

Optimal Location Problem

Final good producer minimizes final good price by solving optimal production path $l_{j}^{s}\left(\omega^{s}\right)=\left\{l_{1 j}^{s}\left(\omega^{s}\right), \ldots, l_{N j}^{s}\left(\omega^{s}\right)\right\}$.

$$
l_{j}^{s}\left(\omega^{s}\right)=\arg \min _{l \in \mathcal{J N N}^{N}}\left\{\prod_{n=1}^{N}\left(\frac{c_{l(n)}^{s}}{z_{l(n)}^{s}\left(\omega^{s}\right)}\right)^{\alpha_{n} \delta_{n}} \prod_{n=1}^{N-1}\left(\tau_{l(n) l(n+1)}^{s}\right)^{\delta_{n}} \tau_{l(N) j}^{s}\right\}
$$

- $\delta_{n} \equiv \prod_{m=n+1}^{N}\left(1-\alpha_{m}\right)$
- Optimal path is determined by upstream and downstream marginal cost and efficiency (vertical cost); and other sectoral input cost at each stage (horizontal cost).

Eaton and Kortum (2002) Framework

Assume $\prod_{n=1}^{N}\left[z_{l(n)}^{s}\left(\omega^{s}\right)\right]^{\alpha_{n} \delta_{n}}$ is an i.i.d draw from Fréchet distribution: $\exp \left\{-\prod_{n=1}^{N}\left[T_{l(n)}^{s}\right]^{\alpha_{n} \delta_{n}} z^{-\theta^{s}}\right\}$.

- As suggested by Antras and de Gortari (2017), this is equivalent to assume under a decentralized approach, $\left[z_{l(n)}^{s}\left(\omega^{s}\right)\right]^{\alpha_{n} \delta_{n}}$ is an iid draw from Fréchet distribution: $\exp \left\{-\left[T_{l(n)}^{s}\right]^{\alpha_{n} \delta_{n}} z^{-\theta^{s}}\right\}$

Solution

Probability or expenditure share on a particular path ending in country j

$$
\begin{equation*}
\pi_{l j}^{s}=\frac{\prod_{n=1}^{N}\left(\left[T_{l(n)}^{s}\right]^{\alpha_{n}}\left[\left(c_{l(n)}^{s}\right)^{\alpha_{n}} \tau_{l(n) l(n+1)}^{s}\right]^{-\theta}\right)^{\beta_{n}}}{\sum_{l \in \mathcal{J}^{\mathcal{N}}} \prod_{n=1}^{N}\left(\left[T_{l(n)}^{s}\right]^{\alpha_{n}}\left[\left(c_{l(n)}^{s}\right)^{\alpha_{n}} \tau_{l(n) l(n+1)}^{s}\right]^{-\theta}\right)^{\beta_{n}}} \tag{10}
\end{equation*}
$$

- $l_{N+1}=j$
- If $\mathrm{N}=1, \pi_{l(N) j}^{s}=\frac{T_{l(N)}^{s}\left[c_{l(n)}^{s} \tau_{l(N))}^{s}\right]^{-\theta}}{\sum_{l \in \mathcal{J}} T_{l(N)}^{s}\left[c_{l(n)}^{s} \tau_{l(N) j}^{s}\right]^{-\theta}}$, consistent with one stage model.
- If only one sector, consistent with Antras and de Gortari (2017).

